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We review the elasticity of flexible and stiff polymer networks with permanent cross-links and

synthesize these results into a unifying polymer chain network model. This framework is then used to

address how the network elasticity becomes modified when the network cross-linking is

thermoreversible in nature, changes in the stability of the network with deformation, and the effect of

a variable rate of network deformation on the non-linear elastic response. Comparisons are made

between this class of simplified network models with elasticity measurements performed on flexible

chain and stiff fiber networks, both with permanent and associative cross-links. Although these

network models are highly idealized, they are apparently able to capture many aspects of the elastic

properties of diverse real networks.

I. Introduction

Synthetic and natural networks of polymers and self-assembling

molecules are ubiquitous in manufacturing and biology, and the

study of network elasticity has a long and distinguished scientific

history.1 The theory of flexible polymer networks has received

particular attention, but even in this case the quantitative role of

interchain interactions in the dry rubber state (the so-called

‘‘entanglement’’ effect) has been slow to develop and the topic

remains one of scientific and technological interest.1 Networks of

stiff fibers have seen a large upsurge of interest recently because

many networks of biological origin (and thus many biological

materials) are comprised of such networks, which have an elas-

ticity quite distinct from their flexible network counterparts.

Specifically, the elasticity of flexible polymer networks is often

characterized at moderate deformations by strain softening and

positive normal stresses while stiff fiber networks often exhibit

strain stiffening and negative normal stresses under deforma-

tion.2,3 The elasticity of these different classes of networks could

thus not be more different from each other. Moreover, many real

networks are comprised of network junctions or cross-links that

involve a reversible association-dissociation process so that the

junctions are not fixed for all time, although their time-averaged

number may be an invariant. Deforming these associating

networks leads to diverse complicating effects such as the

breakdown of the network and subsequent slow recovery

following cessation of an applied stress, an elastic response on the

rate of network deformation, etc. Irreversible deformation effects

such as fracture and plastic flow can also arise when network

materials are subjected to large deformations.

There are diverse applications in manufacturing and biology

relating to the control of the elastic properties of networks and

it is clearly important to have effective and computationally

tractable analytic models to help characterize these networks

and to organize methods to control their properties through

engineering of molecular structure and the control of the ther-

modynamic conditions of gel formation. In our discussion

below, we first review some models of this kind that have been

found successful for describing networks of flexible polymer

chains with fixed network junctions. A new and potentially

useful model of the elasticity of stiff fiber networks is introduced

in the course of this development, based on molecular modeling

and analytical arguments. This model reduces in its simplified

form neglecting entanglement interactions to the phenomeno-

logical Fung model4–11 that is widely utilized in modeling bio-

logical materials when entanglement interactions are neglected

in our model.

After a review and synthesis of prior results, we generalize our

modeling to describe networks whose junctions form through

thermally reversible association. This development requires an

explanation of how these transient junctions influence the elas-

ticity of the resulting network and we utilize results from rigidity

percolation theory to develop a simplified model of the elasticity

of such thermoreversible network systems. We also consider

changes in the thermodynamic stability of self-assembled

networks with deformation and the thermodynamics of the

network self-assembly based on highly simplified models.

Comparison of special cases of our model to experimental

observations on permanent and thermally reversible systems

under diverse conditions show rather good agreement, indicating

that these models offer a practical approach to describing the

elasticity of both rubbery cross-linked materials and complex

fiber gels formed by self-assembly.

In the following section, we summarize some models that have

proven effective in describing flexible polymer networks,

including effects associated with the interaction between network

chains (‘chain entanglement’). We then address how the elasticity

becomes modified when the cross-linking is associative and

where the network forms by self-assembly. Finally, in Section III,

we compare our idealized flexible and stiff chain models of
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network elasticity to experimental observations to illustrate the

modeling results and the different types of elasticity that

networks exhibit.

II. Elasticity of polymer networks with permanent
junctions

A. Networks of flexible cross-linked chains (‘rubber’)

Models of the elasticity of rubbery materials composed of

flexible chains have concentrated on minimal aspects of rubbery

materials. In particular, the classical rubber elasticity models of

Wall and Flory,12 James and Guth,13 Edwards,14 and many

others have focused on the consequences of network connec-

tivity. Classical theories treat rubbery materials as idealized

networks of random walk chains whose junctions deform

approximately affinely in response to a macroscopic deforma-

tion, thereby changing the entropy of the system. More recent

work has emphasized inter-chain interactions or ‘entanglement’

interactions defined in terms of the topological constraint of

chain un-crossability and correlations arising from molecular

packing.

A minimal statistical mechanical model of rubber elasticity

must incorporate three main features of the network chains: 1) A

connected network of flexible chains,12–14 2) ‘Entanglement’

constraints,15–18 3) Finite volume of chains.19 The localization

model (LM) of rubber elasticity is a minimal model that directly

addresses these effects and we briefly summarize the essential

ideas of this model,20–22 which also forms the foundation for our

generalizations below for other more complex networks.

As a first approximation, the localization model (LM) takes

the free energy DFnetwork of the network per unit volume to be

proportional to the number of chains per unit volume nd where

DFchain is the chain free-energy of deformation,

DFnetwork ! ndDFchain (1)

This result, which derives explicitly from classical elasticity

network model calculations, assumes that each chain sees an

equivalent molecular environment arising from its interaction

with surrounding chains and this approximation thus amounts to

a mean field approximation23 when applied more generally. For

a cross-linked network, the number of chains per unit volume is

taken to be proportional to the number of cross-links per unit

volume, the cross-link density.

The second basic approximation is to assume that the network

chains are Gaussian chains in our estimation of the chain

connectivity contribution to DFnetwork. This approximation has

its limitations, especially for large network extensions and for

cases where the network chains are stiff or semi-flexible. (The

treatment of finite extensibility effects and chain semi-flexibility

are relatively well-understood and we return to incorporating

these effects below.) For the present, we are concerned with

understanding the basic nature of non-classical ‘entanglement’

contributions to network elasticity arising from inter-chain

interactions that exist at relatively high polymer concentrations.

Before initiating our modeling of the entanglement contribu-

tion to DFnetwork, we make some general physical observations

that constrain our theoretical development:

1) Dry rubbery materials are normally nearly incompressible

because of strong repulsive inter-segment interactions, despite

the random coil nature of the polymers.

2) Confinement of network chains to a volume on the order of

the hard core volume of the chains alters the average chain

entropy relative to an unconfined chain.

The question is then how one calculates this entropy change

under deformation conditions.

The Feynman-Kac functional limit theorem (FKLT) implies

that confining a chain by anymeans leads to a universal change in

the chain free energy of the flexible polymer chains, Fconfin !
<R2>/x2, where <R2> is the mean squared dimensions of the

unconfined chain and x is the localization length describing the

scale over which the chain is localized.24 <R2> is proportional to

the chain length,N, so that Fconfin is extensive in the chain length.

This limiting scaling relation is also known as ‘ground state

dominance’,25 based on a quantum analogy with the Brownian

chain model. More generally, we have the more general scaling

relation, Fconfin ! <R>df/xdf, for generalized random walks

(having independent steps, but whose variance in step length is

not finite) where <R> is the mean chain size and df is the fractal

dimension of the chain, i.e., <R> ! N1/df. Evidently, we again

obtain a confinement contribution Fconfin that is extensive in N.

In the present instance, this localization effect derives from the

hard core repulsive interactions between a given chain and its

surrounding chains so that Fconfin is entropic in nature. In other

words, hard core excluded volume interactions confine the chains

to ‘tube-like’ regions localized around some average chain

conformation and this chain confinement gives rise to a change

of the entropy per link of the polymer chain. The FKFLT

provides the fundamental mathematical underpinning of the

tube model of polymer melts and rubber elasticity.

So far we have based our model on two fundamental limit

theorems of broad mathematical and physical significance- the

central limit theorem describing the statistical properties of

random walk chains and the FKLT describing how the free

energy of these chains changes with confinement (or the mathe-

matical equivalent of this effect). This provides a sound foun-

dation for a general theory of flexible polymer networks with

strong localizing inter-chain interactions in the melt state. The

problem of calculating how Fconfin becomes modified by macro-

scopic deformation of the rubbery material is a more difficult

problem. It seems reasonable to assume that under quasi-equi-

librium conditions of deformation the FKLT relation still applies

and the crux of the LM then reduces to estimating how x varies

with deformation. There is certainly no reason to believe that x

should vary affinely with the extent of macroscopic deformation

li along the laboratory-fixed axes, as might reasonably be argued

for the coordinates defining the chain junctions in the network.

Gaylord and Douglas20,21 approached this basic problem by

assuming, as Edwards23 had done before, that the network chains

are contained within a random tube with local harmonic

confining potential that is composed of segments that are

oriented along three directions (x, y, z) in the lab-fixed frame.

The harmonic tube model for the inter-chain interaction poten-

tial is chosen simply for mathematical convenience. The FKLT

ensures that essentially any reasonable confining potential will

lead to the same limiting results. We note that Heinrich et al.

have also developed a popular tube model of rubber elasticity,26
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based on the same chain localization concept, but these authors

do not invoke the packing arguments to specify the molecular

parameters in their model and the change in elasticity with

network deformation and swelling. McLeish and coworkers27–29

have considered the tube model to describe the unusual scat-

tering behavior in stretched polymer networks and have reviewed

recent applications of tube model to modeling various aspects of

the phenomenology of entangled polymer chain melts.

A random tube model can now be constructed by viewing the

random tube as consisting of straight tube sections lying along

the macroscopic deformation axes. The distribution function

describing the distribution of the chain monomers within

a random tube segment then factorizes into a product of

Gaussian functions defined in terms of coordinates along the

tube axis and a coordinate normal to the tube axis. Because of the

separability property of random chains, the random tube

segments can be imagined to be aligned along the three macro-

scopic deformation axes with equal probability, a construction

first introduced by James and Guth in their approximate treat-

ment of finite-extensibility effects on network elasticity.

To calculate the free energy change with deformation, the

junction positions are taken to deform affinely,Ri¼ li$Ri0, where

Ri0 is the initial distance between a given network chain end along

the ith macroscopic deformation coordinate direction. This

argument leads to the classical affine network model of rubber

elasticity. Of course, the affine deformation assumption is an

approximation and other models of rubber elasticity take this as

a starting point of their development.30,31 It is the present

authors’ opinion that models of the non-affine contribution to

the network elasticity do not really address the inter-chain

interaction effects responsible for ‘entanglement’ contributions

to the elasticity of dry rubbers.

To estimate x(li), we argue that the hard core volume of the

chain and localizing tube are comparable and invariant to

deformation (see Fig. 1). The assumption of affine displacement

is taken to mean that that length of the tube segments along the

deformation axis deform affinely,

L ¼ lxL0 (2)

where L0 is the length of the undeformed tube. The invariance of

the tube volume with this deformation implies that the length of

the tube times its cross-sectional area is the same before and after

deformation, Lx2x ¼ L0xx0

2. This implies that xx ¼ lbxx0, where the

deformation scaling exponent b equals, b ¼ #½ and where

xx0
¼ xy0 ¼ xz0 ^ x0. This scaling relation is obviously quite

different from an affine variation, xx ¼ lx x0. Rubinstein and

Panyukov32 have made arguments that b is positive (b¼½), as in

the affine assumption model. Their calculation is based on

a model of topological invariance of the network under macro-

scopic deformation in a model that does not consider chain

packing effects.

These considerations lead to the LM20,21 expression for the

free-energy density of a dry rubber,

DFLM ¼ (Gc/2)
P

x,y,z(l
2
i # 1) + Ge

P
x,y,z(li # 1) (3)

where the classical network theory shear modulus Gc is propor-

tional to the cross-link density (nx) and thermal energy (kBT),

Gc ¼ C0nxkBT (4)

In the affine network model of Wall and Flory the prefactor is

C0 ¼ 1 and in the classical non-affine ‘phantom model’ of James

and Guth,13 Deam and Edwards,14 where the network junctions

can fluctuate with the constraint of excluded volume interactions,

C0 ¼ ½. More generally, C0 depends on the details on network

structure (dangling ends, network functionality, etc.)33 and is

considered to be a measurable parameter characterizing a given

network.34 In the absence of other information, we take the

‘phantom’ elasticity model ‘frontfactor’ value, C0 z ½.

The entanglement contribution Ge to the free energy density of

the network,

Ge ¼ gGc + G*
N (5)

includes a cross-term proportional to Gc [and thus nx; see eqn (4)]

with a network parameter g describing the influence of cross-

linking on the inter-chain entanglement interaction. The cross-

link independent contribution G*
N to Ge is identified with the

plateau modulus of the polymer melt, G*
N.

20,21 Much is known

about the dependence of G*
N on molecular parameters35

(see below) and this phenomenology is consistent with the

localization model.36 We note that eqn (3) is consistent with the

Valanis-Landel separable form of the strain energy density of

rubbery materials, a property of the strain energy density that

has been established to be a good approximation for many

rubbery materials.37 The Valanis-Landel property greatly

simplifies calculation of the deformation properties of rubbers.38

Appendix A describes the stress strain relations deduced from the

LM model that we use in our comparisons to experiment below.

Appendix B discusses the predictions for describing the effect of

network swelling on rubber network elasticity. This broad accord

of the LM model with these network observations is

encouraging.

An explicit derivationof the stresss for uniaxial deformation of

an incompressible rubber material (where lx ¼ l; ly ¼ l#1/2;

lz¼ l#1/2) is given inAppendix A for the LMmodel. In particular,

s has the form sLM ¼ Gc (l # l#2) + Ge (1 # l#3/2), which is eqn

(A.2). In our comparisons to experiments below, we often refer to

the reduced stress, I(l) ¼ s/(l # l#2), which is the observed stress

relative to the deformation dependence predicted by the classical

rubber elasticity theory. In a ideal incompressible ‘neo-Hookean’

rubber, I(l) is a constant equal to the classical shear modulus, Gc.

Fig. 1 Molecular dynamics simulation of chain deformation under

macroscopic extension (the macroscopic deformation direction is along

the horizontal direction); left chain is before deformation and the right is

after deformation. Red spheres indicate chain segments and the gray

segments are those of surrounding chains in the proximity of the illus-

trated test chain. The number of chain segments in the test chain envi-

ronment is nearly invariant, consistent with an invariance of the tube

volume with deformation. This figure is for schematic purposes only.
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B. Generalized rod polymer network elasticity model with

permanent cross-links

No single model adequately describes the elasticity of all network

materials. This situation is not surprising when one considers the

different physical nature of the various network types. Of partic-

ular importance is the rigidity of the filaments that comprise the

network; classical rubber elasticity models are simply not appli-

cable to gels consisting of more rigid fibers. Relatively stiff fiber

networks are observed in the context of many fiber networks

(e.g., the microtubule network within the cellular cytoplasm and

the fibrous collagen network in the extracellular matrix of

connective tissues, carbon nanotube networks, etc.) found in

biology and manufacturing. Our goal is to develop effective

minimal models of network elasticity that can be used to describe

the deformation behavior of both synthetic and natural flexible

polymer networks or fiber network gels that are commonly found

in biological materials. Below, we focus on the extreme models of

networks composed of ideally flexible and stiff polymer chains

both with and without entanglement interactions. We also

emphasize both the effects of junctions formed either as a conse-

quence of permanent cross-links or associative cross-link interac-

tions because permanent and associative networks are common.

The literature describing the elasticity of semi-flexible polymer

networks and finite chain extensibility effects on polymer

networks is extensive and we do not attempt to review these

developments here since these effects are described adequately in

other recent publications. Moreover, these effects can be readily

incorporated into our (mean field) network model through

a consideration of how the single chain elasticity is affected by

the semi-flexibility and finite extensibility constraints. However,

it is unclear whether molecular thread models, such as ours, that

involve either ideally flexible or needle-like chain filaments can

describe essential aspects of the non-linear elasticity of real

rubbery materials and fiber networks. We simply assume the

validity of these molecular chain models, the applicability of

a mean field theoretical description, and then focus on the types

of elasticity that these models predict in comparison to well-

accepted experimental studies of network elasticity in flexible

polymer and stiff fiber networks. Next, we introduce a molecular

model of stiff polymer networks that directly extends the classical

flexible chain network just described. As with our development

of the flexible chain network elasticity model, our development

relies heavily on former studies of network elasticity and the

effort emphasizes the integration of fragmentary results into

a more coherent picture of network elasticity and the compara-

tive nature of flexible and stiff polymer networks.

We base our development of a minimal molecular model of the

elasticity of a network of cross-linked rigid rods on a previous

calculation by Vilgis, Boue, and Edwards39who formulated a rod

network theory based on a rigorous extension of the Deam and

Edwards14 theory of the elasticity of a network of flexible ideal

chains. In particular, they introduced a model in which needle-

like rigid rods are tethered by freely pivoting junctions (tetra-

functional) to form a three-dimensional rod network. Curiously,

they found that the elasticity of this rod network exactly recovers

the functional form of the classical flexible chain elasticity model

in the limit of small network deformations [See eqn (3)]. The

entropic elasticity in this case derives entirely from the

deformation of the junction positions rather than from stretching

network chains (which are inextensible in the rod network

model). Qualitatively new behavior was revealed at higher

network deformation, however. The free energy of the rod

network was found to increase exponentially with the square of

the deformation parameter l [see Eqn. (22)]. This is a ‘‘softer’’

increase in the free energy than the power-law singular increase

found in the free energy of network deformation due to finite

extensibility in flexible and semi-flexible network models. We

analytically extend the results of Vilgis et al.39 by demanding that

the limiting small and large deformation behavior of rod network

be recovered. In particular, we propose the relation,

DFrod ¼
Gc

2b
exp

h
b
!
l2x þ l2y þ l2z # 3

"i
# 1

n o
(6)

which by construction exactly recovers the asymptotic large and

small deformation rod network elasticity results of Vilgis et al.39

Unfortunately, the analytic complexity of solving the non-

linear integral equations involved in the mean field solution of

the end-tethered rod network elasticity problem did not allow for

a clear molecular parameter interpretation of the network ‘non-

linear stiffening parameter’ b in eqn (6). We note, however, that

eqn (6) is a familiar empirical relation in the non-linear elasticity

of many real materials. In particular, eqn (6) is equivalent to the

Fung hyperelasticity model,4–11 which provides a phenomeno-

logical description of the non-linear elasticity of diverse biolog-

ical materials. This is first time that this widely discussed relation

(i.e., the Fung model) has been deduced from a molecular model.

The resulting stress-strain relationship in this model, considered

below in our comparison to measurements, is described in

Appendix B.

We formally introduce a rod network model that includes the

effect of chain confinement by adding a generalized localization

contribution to the network elasticity, 2npGe(lx
1/2np + ly

1/2np + lz
1/2np

# 3), where np ¼ ½ and n p ¼ 1 for networks comprised of ideal

flexible and rigid chains, respectively,20,21 where radius of gyra-

tion Rg of an uncross-linked polymer chain in solution scales

with chain mass as,RgfMnp. Combining this contribution of the

network elasticity with eqn (6) provides a minimal molecular

model for the elasticity of rod polymer networks with interchain

entanglement interactions. In particular, the proposed strain

energy for a rod network is then,

DFRC ¼ Gc

2b

n
exp

h
b
!
l2x þ l2y þ l2z # 3

"i
# 1

o

þ2Ge

!
l1=2x þ l1=2y þ l1=2z # 3

" (7)

We can expect local chain packing effects to be substantially less

important in stiff polymer networks, but having stiff polymer

chains should on the other hand amplify interactions between

chains associated with the constraints of chain uncrossability and

volume exclusion. Our comparisons to experiment below provide

an opportunity to study these entanglement effects in stiff fiber

networks within the frame of our model.

III. Elasticity of self-assembled networks

Many networks are formed by a self-assembly process involving

the thermally reversible association of network chains. This
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process may involve the self-assembly of the network fibers,

which in turn, exhibit branching to create a network (perhaps

with other molecules that regulate the fiber branching process).

For example, common gelatin networks self-assemble through

the formation of stiff triple helices of the gelatin molecules that

are linked by flexible chain ‘links’ where the chain helices are not

well organized.40 The associative interactions between the

monomers within the polymer network can be disrupted by

heating or applied stress. Since networks of polymers with

associative interactions and self-assembled fiber networks of

bundled molecules are common, it would evidently be helpful to

have a minimal model that captures essential aspects of these

networks. For example, we can expect that deforming self-

assembled or thermally reversible networks will ultimately cause

a breakdown of network structure by virtue of the stress-induced

disruption of the associations defining the network, with

a consequent loss of network stiffness. Once the network has

‘‘melted’’ due to the imposition of such stresses, it should recover

its pre-stressed state (eventually) through associations and

dissociations occurring under a state of dynamic equilibrium.

Next, we introduce a minimal model to describe this effect. It is

noted that if the network undergoes an instability under defor-

mation, such as fracture or significant plastic flow, before melting

then our theory does not apply; network deformation then leads

to an irreversible modification of the network.

A. Simple model of the shear modulus T dependence of self-

assembling networks

We treat this problem generally by considering simplified models

of the emergence of elasticity and self-assembly. Rigidity perco-

lation theory41,42 and effective medium theory indicate that the

bulk and shear moduli of lattice structures composed of central

force springs connecting the lattice points varies linearly with the

fraction F of possible connected bonds, provided a sufficient

number of bonds (rigidity percolation threshold) for the struc-

ture to exist as a solid. The rigidity percolation threshold is

notably a greater concentration than the geometrical percolation

threshold where the infinite network first forms, i.e., greater

constraints on the particle motions are generally required for

rigidity. The effective medium treatment of rigidity percolation

motivates taking the shear modulus to be proportional to the

fraction F of associating species in the self-assembled state,

G0/G
*
0 ¼ (F # F*)/(1 # F*) z F (8)

where G*
0 is the limiting modulus (limiting linear viscoelastic

regime estimate) in the fully self-assembled state and F* corre-

sponds to a critical amount of ruptured associations where

rigidity is lost. The approximation in eqn (8) applies when F is

near unity and has the advantage of not requiring the intro-

duction of a new fit parameter, F*.
The extent of self-assembly F is the basic order parameter

governing self-assembly and there has been much work to

calculate this quantity for specific self-assembly models.

Expressions for F for realistic assembly models often involve

rather complex analytic relations that are not generally amenable

to closed analytic expression. There is a simplified two-state

model for F that provides a useful approximation for many

practical applications and we adopt this relation here for our

purposes. Specifically, we model F by the relation,43

F ¼ 1

1þ exp
Dh# TDs

RT

# $ (9)

where Dh and Ds are the enthalpies and entropies of the assembly

process and kBT represents the thermal energy. The variation of

F of many other more complicated assembly models is mimicked

rather well by eqn (9), which can be approximated even further

by expanding the free energy of assembly about the self-assembly

transition temperature.43 This yields the alternative simplified

relation,

FF ¼ 1

1þ zpexp
T # Tp

D0

# $ (10)

whereDo describes the temperature breadth of the transition and

zp is a constant (see [43] for the specification of these fit param-

eters in terms of the energetic variables of the self-assembly

model). Eqn (10) has the same mathematical form as the occu-

pation density from statistical mechanics of fermions and this

functional form has been denoted the ‘Fermi function’ FF in the

experimental literature, as discussed below.

We thus have the simple approximation for theTdependence of

the shear modulus G0, which is prescribed by eqn (8) where F is

given by either eqn (9) or the simplified expression eqn (10). Fig. 2

shows the variation of G0/G
*
0 ¼ F as a function of T for repre-

sentative values of the energetic parametersDh andDs.We see that

G0 drops to zero with increasing temperature in a sigmoidal

manner as the temperature is increased. This phenomenon is

observed in diverse biomaterials44,45 and nanotechnology appli-

cations,46 where G0/G
*
0 is often fit to the phenomenological Fermi

function. (This function is apparently a phenomenological

counterpart to the Vogel-Fulcher-Tammann relation for the

temperature dependence of the viscosity and structural relaxation

Fig. 2 Variation of the self-assembly order parameter F or the reduced

linear shearmodulus with temperature from eqn (9) and (10), respectively.

The illustrative curves are for Dh ¼ #35 kJ/mol and Ds ¼ #105 J/mol K,

and forTp¼ 335K andD0¼ 25K. Increasing themagnitude ofDs at fixed

Dh causes the ‘‘melting’ transition to become progressively sharper, while

reducing the transition temperature (inflection point in curve).
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time of glass-forming and some self-assembling systems (e.g., see

Kumar andDouglas47). Note that ‘‘two-state expression’’ forF in

eqn (9), and theFermi approximant definedby eqn (10), are nearly

indistinguishable from each other so that either relation seems

reasonable for quantifyingTdependent changes in the elasticity of

network solidmaterials. The Fermi function has been particularly

utilized in food science field in the quantification of themechanical

properties of breakfast cereals,48 and other common food prod-

ucts, and recently this relation has been applied to the description

of theT dependence of the elastic moduli of polymeric nanofibers,

etc.46 (Recent observations of the formation of a thermally

reversible network structure consistentwith equilibriumbranched

polymer network structure in amodel glass-forming polymermelt

lends some support to the application of our model to glassy

materials.49) The common use of the Fermi function in the char-

acterization of network materials motivated our explanation of

how the Fermi function can be approximately derived from

a molecular model and stimulated our initial modeling of the

elastic properties of self-assembled networks.

B. Deformation dependence of the stability of self-assembled

networks

To describe the elastic properties of deformed networks formed

by self-assembly, we must account for changes in the free energy

of self-assembly accompanying the network deformation

process. There has been much recent work quantifying the effect

of applied deformation on binding constants in ligand-receptor

pairs in the context of modeling cellular adhesion. Bell and others

(see Bongrand50) have introduced a simplified model for how

deformation alters association equilibrium constants. Specifi-

cally, Bell et al.51 argued that the free energy of the equilibrium

constant governing the association and dissociation of the

binding species is modified by simply adding a quadratic term in

the extent of deformation with a phenomenological local force

constant describing how the free energy of assembly (binary

binding of the associating species) becomes modified by defor-

mation. In the spirit of the minimal model introduced above to

describe network elasticity in vanishing deformation limit, we

introduce the simple Bell model expression for the deformation

dependence of the free energy association constant governing the

self-assembly process to obtain a deformation dependent

expression for F,

FðlÞ ¼ 1

1þ exp
Dhþ kf ðl# 1Þ2#TDs

RT

" # (11)

where kf is the force constant mentioned above. In Fig. 3, we

show the variation ofF(l) at a fixed Twhen l is varied and we see

that increasing l causes F (and corresponding the reduced shear

modulus, G0/G
*
0) to decrease sigmoidally. We also show F(T,l) in

Fig. 4 as a function of T at fixed l values where we see the self-

assembly transition temperature (inflection point of F curve)

simply shifts to lower T as l increases. Eqn (11) leads us expect

a general tendency for self-assembled networks to ‘‘melt’’ upon

deformation and a corresponding tendency towards strain

softening if deformation is large enough to induce network

disassembly.

Eqn (10), in conjunction with eqn (11), provides a minimal

model for describing how changes in the free energy of assembly

with deformation alter the elastic properties of assembled

structures change with deformation. The order parameter for

self-assembly F(l) exhibits a sigmoidal variation with increased

deformation l at a fixed temperature and we can similarly define

a simple Fermi model approximant for F,

FF ðlÞ ¼
1

1þ zexp
l# l*

d

# $ (12)

by analogy to eqn (10) where z and d are adjustable parameters

and l* is the critical stretch at a fixed T at which softening

initiates. As before, the Fermi approximant is most appropriate

when the fiber self-assembly transition is sharp (i.e., cooperative).

Fig. 3 Variation of the self-assembly order parameter F or the reduced

linear shear modulus with deformation ratio l at constant temperature

from eqn (11) and (12), respectively. The illustrative curves are for

Dh ¼ #40.75 kJ/mol, Ds ¼ #70 J/mol K, kf ¼ 12 kJ/mol and z ¼ 120,

l* ¼ 2.7, d ¼ 0.09.

Fig. 4 Variation of the self-assembly order parameter F and reduced

linear shear modulus order with T for different fixed values of the stretch

ratio l from eqn (10). Illustrative curves are for Dh ¼ #35 kJ/mol,

Ds ¼ #105 J/mol K, and kf ¼ 1 kJ/mol.
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C. Viscoelasticity of self-assembled networks

The idealized model for the elasticity of self-assembled networks

in the previous section neglects relaxation processes associated

with varying the rate at which strain is applied. In reality,

relaxation processes over time progressively reduce the stress

applied to the network when the application of stress is made at

progressively lower rates. This is another complexity that must

be confronted in modeling the elasticity of networks. Evidence

for these strain rate effects have been reported for telechelic

polymer networks and gelatin gels by Berret and Serero52 and

Groot et al.,53 respectively. In the former system, strain hard-

ening and stress maxima were found to be shear rate dependent.

In the latter case, the initial shear modulus (G0), yield stress and

yield strain of gelatin all varied with the applied shear rate. Of

particular interest is the increase in all three mechanical prop-

erties with increasing strain rate. An assumption of the modeling

of strain rate effects is that deformation rates remain low enough

to remain in a regime where the equilibrium constant governing

the self-assembly process remains well defined.

We may again draw upon recent work on modeling the

viscoelastic properties of self-assembling fluid to model this kind

of viscoelastic effect. Stukalin et al.54 have recently modeled

stress relaxation of solutions of self-assembling polymers and

have found the stress relaxation function j(t) of these solutions

to generally have a stretched exponential form,

j(t) z G0 j0(t), j0(t) z exp(#t/sr)a (13)

where 0 < a < 1 and sr is an average structural relaxation time.

The exponent a primarily affects the averaging of the relaxation

of the individual assembled chains over the size distribution that

generally accompanies the self-association by virtue of Boltz-

mann’s law.We adopt eqn (13) as a model of the stress relaxation

process of our assembled networks. Further, we take the defor-

mation rate (u) at which the stress is applied to equal the

reciprocal of time in eqn (13) and define t/sr ¼ 1/usr by an overall

deformation rate parameter, G. The relaxation stiffness at a finite

dimensionless rate of network deformation G for our deformed

networks is then taken to equal,

G0(G,T)/G
*
0 ¼ FU (14)

whereU¼ exp[#(1/G)a]. A factor of this kind has been previously

invoked by Berret and Serero52 to describe variable viscoelas-

ticity as a function of G in their network elasticity measurements.

Many self-assembling systems recover their unstressed prop-

erties following a cessation of the applied stress as the system

recovers its quiescent state. This phenomenon has been a partic-

ular focus of interest in actin networks subjected to stretch-

ing,55,56 a phenomenon that has been suggested to be of great

significance in cellular function.57 We may model this recovery

process by multiplying F in eqn (11) by a corresponding stress

recovery function, R(t/sR) ¼ (G0 # Gcessation) [1 # e#(t/sR)a] +

Gcessation, where sR is a recovery time for network ‘rejuvenation’

and where Gcessation is the cross-link contribution to the modulus

at the time of cessation of the applied stress, a quantity that can

be calculated from the model above. Note that this expression

implies that R(t) approaches its equilibrium value G0 at long

times. In general, we expect recovery time sR to be on the order of

the linear viscoelastic relaxation time sr in eqn (13). We

emphasize that our modeling does not describe the common

situation at very large deformation where the material fractures

or suffers some instability or extensive plastic deformation that

preempts that network melting process.

Combining eqn (13) and (14) with the entangled rod network

model [eqn (7)] provides a simple model for the deformation rate

dependence s of these networks in uniaxial deformation,

s ¼ FUGc(l # l#2)exp[b(l2 + 2l#1 # 3)] + Ge(l
#1/2 # l#5/4) (15)

Correspondingly, for a network of flexible chains with thermally

reversible associations we have,

s ¼ FUGc(l # l#2) + Ge(1 # l#3/2) (16)

Many real associating networks form over long timescales and

exhibit ‘aging’ behavior in their mechanical properties over long

timescales. Sollich58,59 has developed an interesting constituitive

modeling approach for ‘glassy’ material systems that is

frequently cited as providing qualitative insights into measure-

ments on biological thermoreversible gels. This model should be

useful in the complementary case to our work where the polymer

network is in a highly non-equilibrium glassy state, a situation

that may be operative in the fiber networks in living systems

where the network properties are affected by the presence of

motor proteins, chemical reactions involving ATP, calcium

reaction diffusion waves modulating the fiber assembly, etc.

III. Results and discussion

A. Application to flexible chain networks with permanent cross-

links

It is well known that the classical theory of rubber elasticity has

limited applicability to the description of dry rubbery materials

composed of flexible polymer chains, although this model

becomes quite a useful description to swollen polymer networks

where interchain packing interactions are diminished by

swelling.60,61 Many molecular models have been introduced to

describe the elasticity of dry rubbery materials, but a recent

evaluation of these models by Han, Horkay and McKenna38

indicated that only two models are empirically successful in

fitting the elastic behavior of real rubbery materials– the locali-

zation model (LM) of Gaylord and Douglas and the Flory-

Erman ‘junction fluctuation’ model. (The Flory-Erman model

contains a parameter relating to fluctuation in the junction

positions that affects the degree to which their displacement is

affine under macroscopic deformation.) The LM has the

advantage of physical transparency and makes predictions for

the model parameters that have been validated by measurement.

For example, McKenna et al.62 found that the LM describes

torsional rigidity measurements on dry rubbers having a range of

cross-linking densities where the classical term is fixed to its

classical value (C0 ¼ ½) and Ge was found to have exactly the

form predicted by eqn (5), the entanglement contribution to

the dry rubber elasticity Ge is linear in Gc and extrapolates to the

plateau modulus G*
N in the limit of vanishing cross-linking

density (See Appendix A). The LM prediction for the
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dependence of G*
N on molecular structure (e.g. chain cross-

sectional dimension) also accords rather well with observations

on numerous polymers.36 The junction-fluctuation model does

not have this predictive capability.

We briefly illustrate the nature of dry rubber elasticity in

comparison to the classical rubber elasticity theory in Fig. 5 and

6 (the reduced stress is defined relative to the classical rubber

elasticity scaling), where comparison is made to the classical data

of Rivlin and Saunders63 and Pak and Flory’s64 on the

compression and extension of dry rubbers (natural rubber and

polydimethylsiloxane, respectively) at moderate cross-linking

densities. The data is shown in the form of a reduced stress

relative to the classical theory to emphasize the deviation from

the classical theory.

The fits of the LM to this rubber elasticity benchmark data

reveals that the non-classical contribution (Ge) to the shear

modulus is nearly a factor of five times larger than the contri-

bution from the classical network elasticity. This observation

underscores the limitations of classical rubber elasticity to the

description of dry rubber materials.

B. Application to permanent stiff chain networks

From our development in Sect. II, we many expect networks of

cross-liked stiff fibers to exhibit a qualitatively different elas-

ticity. In particular, such networks are predicted theoretically to

exhibit strain stiffening rather than strain softening under exten-

sion and this phenomenon has recently been receiving significant

experimental and theoretical attention,2,52,53,55,65,66 mainly

because of its biological importance.

We illustrate this phenomenon with some other widely

recognized data in Fig. 7, where we also show comparisons to the

rod network model with entanglement interactions included. As

noted before, this model is equivalent, in the absence of entan-

glement interactions, to the phenomenological Fung model. The

Fung model is widely successful in describing the load-defor-

mation behavior of various types of soft tissues.4–11 This type of

elasticity is common in real ‘gel’ materials and we emphasize how

different this behavior is from the strain softening found for

flexible polymer chain networks (Fig. 5 and 6). (At very large

deformations, flexible polymer networks exhibit a singular strain

stiffening associated with the finite extensibility of real flexible

Fig. 5 Stress-strain plot of Rivlin and Saunders’s data63 for the

compression and extension of vulcanized natural rubber. The data is fit

with the localization model, with fitting parameters Gc ¼ 12 kPa and

Ge ¼ 94 kPa with correlation coefficient R2 ¼ 0.999 (maximum deviation

in stress is 6.17 kPa). Scaling errors arising from digitization of the

original plots are estimated to be no more than '10%. Inset: reduced

stress vs. inverse deformation or ‘Mooney-Rivlin’ plot.

Fig. 6 Stress-strain plot of Pak and Flory’s data64 for the elongation and

compression of polydimethylsiloxane. The data is fit with the localization

model, with fitting parameters Gc ¼ 55 kPa and Ge ¼ 184 kPa, and with

R2 ¼ 0.999 (maximum deviation in stress is 98.6 kPa). Scaling errors

arising from digitization of the original plots are estimated to be no more

than '10%. Inset: reduced stress vs. inverse deformation. The LM also

compares well with biaxial extension,20,21 and torsional deformation

measurements on dry rubbers62 and network elasticity of rubbers cross-

linked in a deformed state.75,76 Torsional deformation62 measurements

performed over an wide range of nx, where C0 was fixed to equal ½,

yielded a fitted Ge having exactly the form predicted by eqn (5), i.e., Ge is

linear in nx with slope g, where Ge extrapolates to the plateau or transient

rubbery modulus G*
N of the entangled polymer melt.

Fig. 7 Reduced stress vs. stretch plot of the shear deformation of

a neurofilament gel.66 The data is fit with the rod chain network model,

both with (solid curve) and without (dashed curve) applying the Fermi

approximation, along with eqn (11), with fitting parameters: Gc ¼ 750

kPa,Ge¼ 1000 kPa, b¼ 0.125, z¼ 0.9, l* ¼ 6, and d¼ 0.3. Inset: stress vs.

deformation, with R2 ¼ 0.998 for the fit with the simple Fermi approx-

imant (maximum deviation in stress is 0.004 kPa).
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chains; Gaussian chains are infinitely extensible). Strain stiff-

ening is also apparent in microscale observations on self-assem-

bled fiber networks. For example, Fig. 8 illustrates the microscale

deformation of chicken sternal cartilage determined by the

atomic force microscope (AFM). As in the other stiff chain

network systems, we are able to obtain a good fit to our network

model. Numerous recent studies of the deformation of fiber

networks have indicated similar data to the representative data

shown in Fig. 7 and 8.

C. Application to self-assembled fiber networks

It is apparent from Fig. 7 that there is a tendency for the strain

stiffening to weaken with increasing deformation, leading a slight

turnover in the data for large l. Indeed, this tendency is normal

and progressively increases with increasing deformation. To

address this general phenomenon, we recognize that the fibers

composing the gel form by the dynamic process of molecular self-

assembly and that the associations governing network connec-

tivity eventually break down under stress, which for systems

formed by equilibrium self-assembly should be perfectly revers-

ible given enough time for recovery (which can be a very long

time!). We illustrate this general phenomenon - stiffening fol-

lowed by abrupt softening - in Fig. 9 in the case of a gelatin gel

under deformation. Similar observations have recently been

reported for actin55,56 (where reversible fiber buckling was

invoked to rationalize the facile recovery of the elastic properties

of the undeformed system) and recently in thermally reversible

gels of block copolymers67).

We next compare our model of self-assembling stiff networks

subject to a deformation dependent change in the stability of

network. Fig. 9 shows that this simple model is able to capture

the stiffening and subsequent softening in an effective manner

when we use the simple Fermi approximation for the deforma-

tion dependence of the linear shear modulus. The self-assembly

energetic parameters obtained from a fit to this data (Dh ¼
#38 kJ/mol and Ds ¼ #77.6 J/mol K) are similar to values

observed in many self-assembling systems (e.g., Dh and Ds for the
equilibrium polymerization of a-methylstyrene have been found

to equal Dh ¼ #35 kJ/mol and Ds ¼ #105 J/mol K). We expect

our model of the elasticity of self-assembled stiff chain networks

to be widely applicable to diverse biological and synthetic

networks.

Another basic aspect of networks of dynamically associating

species is a sensitivity of the elastic response to the rate of

straining the sample. We illustrate this expected effect schemat-

ically in Fig. 10 for a range of dimensionless strain rates G where

we take a ¼ 0.8, as in recent measurements on telechelic polymer

networks.52 Our main point here is that we can understand the

qualitative effect of varying strain rate on the elasticity of this

class of gels within our network model. We look forward to

comparing our model to other data over a range of thermody-

namic conditions to further test the model in the future.

D. Application to self-assembled flexible chain networks

Gelation may also arise from the association of flexible chains

and the effect of large deformation on the elasticity of these gels

has obvious practical interest. For example, we can expect this

situation to apply to nanoparticles (NP) dispersed in a polymer

matrix in cases where the association of the NP with the polymer

chains creates the equivalent of dynamic cross-links. There is

a large literature showing a strong softening of NP-filled

networks where the effect is temperature dependent and where

the effect is observed following a small extent of deformation.

The Payne effect is often attributed to the breakdown of particle-

polymer associations within the network,68 as in our model, or

Fig. 8 Reduced stress vs. inverse stretch plot of the microindentation of

chicken sternal cartilage. The data is fit with the rod chain + localization

model in which the additional Fermi approximation, eqn (11), is applied:

fitting parameters Gc ¼ 0.9 kPa, Ge ¼ 0.8 kPa, b ¼ 45, z ¼ 1, l* ¼ 0.8745,

and d¼# 0.008. Uncertainties in measured stresses are mainly attributed

to sample surface roughness and inclination (estimated to be on the order

of several percent due to the relatively large size of the probe), and to

errors in measuring the probe radius (estimated to be no greater than

'5%). Inset: stress vs. inverse deformation where R2 ¼ 0.998 (maximum

deviation in stress is 0.17 kPa).

Fig. 9 Stress vs. stretch plot of the shear deformation of a gelatin gel.53

The data is fit with two forms of the rod chain network model: one curve

indicates the simple Fermi function description of the deformation

dependence of the shear modulus (solid curve; fitting parameters Gc ¼ 56

Pa, Ge ¼ 12 Pa, b ¼ 0.4, z ¼ 210, l* ¼ 2.85, and d ¼ 0.1; R2 ¼ 0.952,

maximum deviation in stress is 0.06 kPa) and the other curve indicates

a comparison where the full expression for the order parameter is utilized

[eqn (11)] (dashed curve; fitting parameters Gc ¼ 56 Pa, Ge ¼ 12 Pa,

b ¼ 0.4, Dh ¼ #38.1 kJ/mol, Ds ¼ #75.0 J/mol K, and kf ¼ 9.0 kJ/mol;

R2 ¼ 0.948, maximum deviation in stress is 0.06 kPa). Inset: reduced

stress vs. deformation.
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the irreversible breakup of NP clusters within the network. The

breakup of the physical associations should be reversible while

this is not generally the case for the breakup of the NP clusters.

Our model only considers the first mechanism of strain softening

and does not address the irreversible NP breakup mechanism of

strain-softening, which no doubt arises in some nanocomposites.

We consider the consequences of deformation on flexible

polymer networks based on the same model for the deformation

dependence of G0 used in our model of a self-assembled stiff

network. In our illustrative calculations, we restrict attention to

unentangled flexible polymer networks where we can appropri-

ately neglect the entanglement contribution (i.e., Ge ¼ 0). This

approximation is probably more generally applicable for poly-

mer nanocomposites at low NP concentrations since the effect of

deformation on the entanglement contribution to the network

elasticity (Mullin’s effect) normally occurs at relatively large

extents of deformation in comparison to the Payne effect.

Fig. 11 illustrates the result of these approximations for our

highly idealized model of a NP filled unentangled flexible chain

network. We see from Fig. 11 that the strain softening can be

a large effect at small deformations and that effect becomes

progressively larger upon cooling. These general trends in

measurements are observed in real nanocomposites, where the

strain softening effect vanishes at high temperature where the

cross-links ‘melt’. We have chosen the transition temperature for

network dissociation (inflection point temperature of F in Fig. 2)

to be 120 (C which is close to the value that seems to apply to the

NP measurements of Kalfus and Jancar.68 More quantitative

comparisons between our model and experiments are needed, but

our model clearly captures correct physical trends in this prac-

tically important class of thermally reversible gels. The effects of

entanglement interactions on the Payne effect, appropriate to the

situation where the polymer chains are long, can be incorporated

by simply including a Ge contribution into our model. However,

this generalization does not change the qualitative nature of

strain softening found for the NP filled polymer melts, unless the

extent of deformation is so large as to significantly modifies the

entanglement contribution to the rubber elasticity. Next, we

consider the deformation rate dependence on the entanglement

contribution to flexible polymer networks composed of long

flexible polymer chains. This Mullins effect is a non-trivial effect

even in the absence of added NP.

In these illustrative computations, we assume that the network

connectivity contribution to the network elasticity of the flexible

polymer network is negligible in comparison to the entanglement

contribution, which physically corresponds to a low cross-link

density in the melt state (just enough cross-links for the network

to be in a percolated solid state). In this model, the only contri-

bution to the stress under steady deformation in the localization

model equals Ge (1 # l#3/2). Applying the same model as

described above for the rate of relaxation of this entanglement

contribution then provides a model of the strain rate G and strain

dependence of entanglement contribution to the elasticity,

Ge (1 # l#3/2) exp[(#1/Ge)
3/5], where Ge ¼ u ser is the product of

the deformation rate u and an entanglement recovery time ser.
This recovery time should be on the order of the terminal stress

relaxation time sT ! M3.4 of the polymer melt.24 Recovery after

a large deformation can also be modeled through the introduc-

tion of corresponding stress recovery function R(t/ser) in

a fashion described above for the recovery of the elastic prop-

erties of network whose structure is broken down under stress

where ser governs the rate of recovery to the entangled state. We

plan to study this recovery phenomena in future work. At

a higher level of development, we could incorporate NP into

entangled polymer melts where the effects of the associative or

Fig. 10 The data and fit using the order parameter form of the rod

polymer network model from Fig. 9 are reproduced, along with fits in

which the deformation rate G is progressively decreased. The tendency of

s to plateau at large l in measurements of this kind is often due to the

onset of gel fracture which preempts the gel melting process,67 an effect

that is not described by our simple stress-induced network disassembly

model. Our model should only be applied when the material can recover

its initial network properties, at least approximately, after network

breakdown under stress.

Fig. 11 Reduced stress plot of a flexible unentangled chain network that

conforms to the classical model with Gc ¼ 45 kPa, showing the effect of

temperature on strain softening behavior. Thermodynamic parameters:

Dh¼# 40 kJ/mol,Ds¼#100 J/mol K, and kf¼ 1000 kJ/mol. Inset shows

the stress-stretch relationship at room temperature and at elevated

temperature. In the context of carbon black and nanoparticle filled

rubbers, this type of strongly temperature dependent strain softening is

called the ‘‘Payne effect’’.68,78 Note that the stiffness in these nanoparticle

cross-linked rubber networks increases upon cooling, which is opposite

from classical theory of rubber elasticity with permanent cross-links.
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permanent network junctions are also considered. Application to

such complex systems, however, will require validation of the

model in simpler situations where there are not so many effects in

play.

E. Observations on biological fiber network gels

Storm and colleagues66 have recently emphasized the character-

istic strain stiffening properties of many biopolymer networks

and the neurofilament gel reproduced in Fig. 7 provides a good

illustrative example. Applying the full rod network model, along

with the strain dependence of the shear modulus leads to a better

fit of the data, as illustrated in Fig. 7. The effect of deformation

on the thermal stability of the network is evident in this data.

The extracellular matrix (ECM) of cartilage provides another

good example of such a rigid chain biological network. Along

with charged glycosaminoglycans, the meshwork of collagen

fibers provides tissue with its strength and compressive resis-

tance. In compression (or indentation, which is essentially

a compressive process69), strain stiffening is dominant, as illus-

trated by our measurements shown in Fig. 8. The rod network

model capably describes the observed elasticity very well until the

onset of strain softening, which is often observed to be much

more dramatic than found in Fig. 7.

Networks comprised of two distinct components having very

different flexibility can also exhibit strong strain softening. For

example, the addition of platelet cells to fibrin gels65 produces

dramatic change in gel elasticity. When the highly deformable

platelets are added the network it behaves more like a flexible

chain network where the rod-like protein filaments play the role

of effective cross-links.

IV. Conclusions

We have developed a series of simple models of the elasticity of

network materials that address essential physical aspects of this

broad class of materials. Building on former successes for flexible

polymer networks in the dry state (rubbery materials) we have

extended the former modeling to include networks of stiff poly-

mers. Some classical observations on the elasticity of rubbery

materials are compared with our models to illustrate their

effectiveness and to provide a counterpoint for our newmodeling

of the elasticity of stiff polymer networks that exhibit a dramat-

ically different elasticity (e.g., strain stiffening versus strain

softening at low network deformations).

After showing that our molecular model of stiff polymer

networks can reproduce essential trends in the elasticity of stiff

polymer networks, we generalize our modeling to address the

fact that many gels exhibit cross-links that form by self-assembly

or dynamic association. We introduce simple models of the

temperature and strain dependence of the elasticity associated

with changing the free energy of assembly with deformation and

that predict many of the observed elasticity trends seen in real

networks, both stiff and flexible chain varieties. Further experi-

mental measurements and modeling are no doubt required to

refine the models, but these simple network models seem to

capture many of the essential characteristics of complex gels and

provide at least qualitative insights into observed trends in these

complex materials. Future work should particularly focus on the

temperature dependence of the shear modulus to characterize the

energetic parameters governing the self-assembly process and the

quantification of the rate of strain effects in stiff and flexible

chain gels.

Appendix A. The elasticity of dry rubbers

Calculations of the stress-strain relations for dry rubber are then

remarkably simple for the LM.20,21 Under uniaxial deformation

(lx ¼ l; ly ¼ l#1/2; lz ¼ l#1/2) of an incompressible material in

three dimensions, we have the normal stress s,

s ¼ d[DFnetwork/V0]/dl (A.1)

where V0 is the dry rubber volume. Using the FLM expression for

Fnetwork from eqn (A1) implies a remarkably simple relation fors,

s ¼ Gc(l # l#2) + Ge(1 # l#3/2) (A.2)

The stress relative to its classical deformation variation

(l # l#2) defines a reduced stress:

I(l) ^ s/(l # l#2) ¼ Gc + Ge(1 # l#3/2)/(l # l#2) (A.3)

For large deformations (l/N), this expression reduces to an

asymptotic Mooney-Rivlin relation,70,71

I(l) z Gc + Ge(1/l) (A.4)

so that Gc and Ge can be identified approximately with the

Mooney parameters 2C1 and 2C2 that are normally considered in

characterizing dry rubbers under extension. Blokland72 has

provided an extensive tabulation of C2 for a variety of rubbers at

relatively high cross-link densities and we tentatively suggest the

phenomenological relation gz 1/3 [see eqn (5)] as a useful rough

estimate of the entanglement contribution to rubber elasticity in

the absence of direct measurement.

The reduced stress in the LM can be generalized to d-dimen-

sions:

s ¼ Gc[l # l#(d+1)/(d#1)] + Ge[l
2/(d#1)#1 # l#2/(d#1)(d#1)#1] (A.5)

which reduces to the classical–like expression s ¼ Gc [l # l#1] in

high dimensions73 and an expression applicable to the elasticity

of membranes (e.g., polymerized Langmuir films) for d ¼ 2.74

Previous comparisons of the LM to experiment show that this

simple model compares well with uniaxial compression and

extension measurements, as well as biaxial extension,20,21 and

torsional deformation measurements on dry rubbers.62 More-

over, the LM adequately describes network elasticity of rubbers

cross-linked in a deformed state.75,76 The torsional deformation

measurements of McKenna et al.62 are particularly notable in

this type of test of the molecular model since these were per-

formed over a relatively large range of nx. In particular, a fit of

these measurements (where C0 was fixed to½) to the localization

model yielded a Ge relation having the form predicted by eqn (5),

i.e., Ge is linear in and extrapolates to G*
N, the transient shear

modulus of the polymer melt. This is reassuring test of the

physical soundness of the LM. One of the most challenging tests

of a theory of rubber elasticity is the prediction of the changes in
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the elastic properties of the network upon swelling, which tends

to diminish the effects of interchain interaction. In Appendix B,

the predictions for the LM are shown to be in broad accord with

classical experimental studies on the effect of network swelling

on rubber network elasticity. This broad accord of the LMmodel

with these network observations is again encouraging for the

physical basis of the model.

Appendix B. The elasticity of swollen rubbers

The theoretical prediction of the elasticity of swollen flexible

polymer networks (‘rubber’) from information about the dry

rubber is a challenging problem. Before addressing this problem,

we note some insightful comments and classic observations made

by Gumbrell et al.19 on this topic:

‘‘The change in C2 [non-classical contribution to rubber elas-

ticity; see eqn (A.4)] with volume swelling can be associated with

the finite volume of the rubber molecules. This leads to a reduc-

tion in the number of possible configurations as two molecules

cannot occupy the same space at the same time nor can they pass

through one another. The reduction of configurations from this

cause would naturally be less in the swollen than in the dry state

and in highly swollen rubbers deviations from ideal behavior due

to this cause will be small.’’

‘‘The value of C2 is found to be large in dry rubbers and

decreases to zero at high degrees of swelling.’’

The first issue that we must address, in a manner consistent

with the former formulation of the LM, is the concentration

dependence of the plateau modulus of a polymer melt. In a melt

of high molecular mass polymers, the chains are only transiently

localized into their local tube environments on the time scale of

the stress relaxation time, the terminal time. The system thus

responds elastically when perturbed at relatively high frequency

measurements, while the system flows over long time scales.

Cross-linking locks chains into a permanently localized state- an

amorphous solidification transition.77

In the limit nd / 0 (high molecular mass polymer melt), the

entanglement contribution Ge is simply due to chain localization

as a result of inter-chain interactions:21,24,75 Ge(nd / 0) z G*
N

where DFlocalization ! G*
N ! nd<R

2>/x2. If we imagine the network

as being comprised of one single molecule (tube) of length N that

fills space, then the change in system volume upon swelling V0 /
V implies the change in the correlation length x ! x0 f

#1/(d #1) and

where cross-link density becomes, nd ¼ fnd0, where f is the

polymer volume fraction. These relations then imply that the

plateau modulus of the diluted melt GN (f) scales as,

GN(f) ¼ G*
Nf

(d + 1)/(d#1) or GN(f; d ¼ 3) z G*
Nf

2 (B.1)

Notably this scaling relation has nothing to do with the fractal

character of the chains. This scaling relation is simply a conse-

quence of chain packing. The same packing argument implies

that G*
N scales in inverse proportionality to the chain cross-

sectional areaA since x2 ! A.24 The entanglement contribution to

the elasticity of polymer networks, and even polymer melts,

should then be reduced for entangled polymer chains with bulky

sidegroups.

To calculate the tension of a swollen rubber subjected to

deformation,20 we define a swelling factor to describe the first

swelling part of the deformation (V0l
3
s ¼ V), where ls is the

swelling factor. This deformation is followed, for example, by

a uniaxial deformation lx ¼ a;ly ¼ a#1/2;lz ¼ a#1/2 so that the

tension s (a) is equal to s ¼ d[DFnetwork/V]/da or explicitly the

LM predicts,

s ¼ Gcf
1/3(a # 1/a2) + (gGc + G*

Nf)f2/3(1 # a#3/2) (B.2)

The concentration dependent reduced stress I(a,f)^ s/(a# 1/

a2)f1/3 then equals,

I(a,f) ¼ Gc + (gGc + G*
Nf)f1/3(1 # a#3/2)/(a # a#2) (B.3)

In the large extension limit (a / N) eqn (B.3) reduces as

before to the Mooney-Rivlin form,

I(a,f) ¼ Gc + 2C2(f)/a, a / N (B.4)

where Gc ^ 2C1 and Ge(f) z 2C2(f) and the ‘Mooney param-

eter’ C2 exhibits the non-trivial concentration scaling,

2C2(f) z (gGc + G*
Nf)f

1/3 (B.5)

Although C2 generally vanishes upon swelling, as noted by

Gumbrell et al.,19 there is a qualitative difference in the concen-

tration dependence of the entanglement contribution to the

elasticity of rubbery materials having relatively high and low

cross-linking densities. For lightly cross-linked materials where

the chain localization term related to the plateau modulus

dominates, we predict that the Mooney parameter should drop

off rapidly with concentration,

C2(f) ! G*
Nf

4/3, nx / 0 (B.6)

while for highly cross-linked rubbers the scaling becomes like

that of classical rubber elasticity theory,

C2(f) ! Gcf
1/3, nx / N (B.7)

Numerous observations on lightly cross-linked rubbers are

consistent with eqn (B.5), specifically C2(f) for lightly cross-

linked dry rubbers often exhibits a concentration power law19,78,79

near 1 or 4/3, the precise value predicted by the LM. On the other

hand, Douglas and McKenna22 have shown that the scaling

relation eqn (B.7) holds rather well for relatively highly cross-

linked natural rubber. The accord of the LM with these quali-

tative changes in the elasticity of rubbers, depending on the cross-

linking density, is again encouraging.

Evidently, the non-ideal contribution to rubber elasticity can

be large in unswollen rubbers, and can even be larger than the

contribution arising from chain cross-links. The localization

model attributes this non-ideal contribution to strong inter-chain

interactions that influence the chain entropy. Comparison of

localization model to dry rubber deformation data provides

a reasonable description of the elasticity of rubbers in all modes

of deformation considered so far. The LM predicts that elasticity

of lightly and highly cross-linked rubbers changes in a qualita-

tively different fashion with network dilution. In view of the

simplicity of the analytic form of the model, the physically

sensible nature of the parameters derived from it, and its success
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in capturing qualitative aspects of rubber elasticity in both dry

and swollen rubbers, we conclude that the model is a useful

working tool in modeling rubbery materials.

In a previous review of the experimental literature to swollen

rubbers,38 it was concluded that the constrained junction fluc-

tuation model of Flory and Erman30 provided the ‘‘best’’

empirical description of elasticity of swollen rubbers under

different deformation conditions where the fitting parameters of

this model were freely adjusted. However, this model offers no

predictions about how the fitting parameters should vary with

molecular structure or the extent of swelling. A comparison was

also made to the LM in this work where the basic localization

variable Ge was not allowed to vary with the concentration,

however, so that the predictive capability of the LM to describe

the elasticity of swollen rubbers, based on dry state measure-

ments, was not made evident. In view of the empirical success

and simple and physically transparent nature of the LM, we

believe that this model has significant advantages over other

available models to describe the elasticity of both dry and swollen

rubbers.

Appendix C. Expression of the shear stress under uniaxial

deformation in the rod network model

We deduce the stress-strain relationship for a uniaxial network

deformation from eqn (6) as,

s ¼ Gc(l # l#2)exp[b(l2 + 2l#1 # 3)] (C.1)

In simple shear, where the shearing force is applied along the x

direction and results in a shear strain g, the principal stretch

ratios are lx ¼ l, ly ¼ 1, and lz ¼ l#1. The extent of shear equals,

g ¼ l # l#1, and the shear stress S is then defined as,

S ¼ d½DFrod *
dg

¼ d½DFrod *
dl

dl

dg
(C.2)

Substituting dl/dg ¼ (dg/dl)#1 and performing the differentia-

tion, we obtain the desired explicit relation for S,

S ¼ Gc(l # l#1)exp[b(l2 + l#2 # 3)] ¼ Gcgexp(bg
2) (C.3)
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